Solving Non-Uniqueness in Agglomerative Hierarchical Clustering Using Multidendrograms
نویسندگان
چکیده
منابع مشابه
Solving non-uniqueness in agglomerative hierarchical clustering using multidendrograms
In agglomerative hierarchical clustering, pair-group methods suffer from a problem of non-uniqueness when two or more distances between different clusters coincide during the amalgamation process. The traditional approach for solving this drawback has been to take any arbitrary criterion in order to break ties between distances, which results in different hierarchical classifications depending ...
متن کاملMultiDendrograms: Variable-Group Agglomerative Hierarchical Clusterings
MultiDendrograms is a Java-written application that computes agglomerative hierarchical clusterings of data. Starting from a distances (or weights) matrix, MultiDendrograms is able to calculate its dendrograms using the most common agglomerative hierarchical clustering methods. The application implements a variable-group algorithm that solves the non-uniqueness problem found in the standard pai...
متن کاملImplementing Agglomerative hierarchical clustering using multiple attribute
Agglomerative hierarchical clustering algorithm used with top down approach. It implement with multiple attributes. In multiple attributes frequency calculation is allocated. Memory requirements are less in this process. Hierarchical clustering produce accurate result than any other algorithm. This is very less time consuming process.
متن کاملCompetence maps using agglomerative hierarchical clustering
Knowledge management from a strategic planning point of view often requires having an accurate understanding of a firm’s or a nation’s competences in a given technological discipline. Knowledge maps have been used for the purpose of discovering the location, ownership and value of intellectual assets. The purpose of this article is to develop a new method for assessing national and firmlevel co...
متن کاملModern hierarchical, agglomerative clustering algorithms
This paper presents algorithms for hierarchical, agglomerative clustering which perform most efficiently in the general-purpose setup that is given in modern standard software. Requirements are: (1) the input data is given by pairwise dissimilarities between data points, but extensions to vector data are also discussed (2) the output is a “stepwise dendrogram”, a data structure which is shared ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Classification
سال: 2008
ISSN: 0176-4268,1432-1343
DOI: 10.1007/s00357-008-9004-x